Redis高可用
单机Redis存在的问题
- 内存→数据丢失
- 并发能力→搭建主从集群,实现读写分离
- 存储能力→搭建分片集群,利用插槽机制实现动态扩容
- 故障恢复→哨兵,实现健康检测和自动恢复
主从复制:允许一个 Redis 服务器(主节点)将数据复制到一个或多个 Redis 服务器(从节点)。这种方式可以实现读写分离,适合读多写少的场景。
哨兵模式:用于监控主节点和从节点的状态,实现自动故障转移。如果主节点发生故障,哨兵可以自动将一个从节点升级为新的主节点。
集群模式:Redis 集群通过分片的方式存储数据,每个节点存储数据的一部分,用户请求可以并行处理。集群模式支持自动分区、故障转移,并且可以在不停机的情况下进行节点增加或删除。
主从

我们在服务器 B 上执行下面这条命令:
#服务器 B 执行这条命令
replicaof <服务器 A 的 IP 地址> <服务器A的 Redis 端口号>
服务器 B 就会变成服务器 A 的「从服务器」,然后与主服务器进行第一次同步。
然后可以通过INFO replication
查看状态信息,发现是角色是master,连接的从节点数量是2个,状态是online

在7001
set后,在7002
和7003
都能拿的到

然后现在在从节点set一下数据,发现报错,只能进行只读操作,说明天然就实现了读写分离,主写从读

:在5.0以后新增命令replicaof,与salveof效果一致。
数据同步原理:
全量同步

- runid 指的是主服务器的 run ID,从节点第一次同步不知道主节点 ID,于是传递 "?"。
- offset 为复制进度,第一次同步值为 -1。
文字版本的流程:
- 从节点发送
psync ? -1
,触发同步。 - 主节点收到从节点的 psync 命令之后,发现 runid 没值,判断是全量同步,返回 fullresync 并带上主服务器的 runid 和当前复制进度,从服务器会存储这两个值。
- 主节点执行 bgsave 生成 RDB 文件,在 RDB 文件生成过程中,主节点新接收到的写入数据的命令会存储到
replication buffer
中。 - RDB 文件生成完毕后,主节点将其发送给从节点,从节点清空旧数据,加载 RDB 的数据。
- 等到从节点中 RDB 文件加载完成之后,主节点将 replication buffer 缓存的数据发送给从节点,从节点执行命令,保证数据的一致性。
待同步完毕后,主从之间会保持一个长连接,主节点会通过这个连接将后续的写操作传递给从节点执行,来保证数据的一致。
增量同步
什么时候做增量同步呢?
当slave故障重启还是手动重启的slave同步,就叫增量同步。
主从之间的网络可能不稳定,如果连接断开,主节点部分写操作未传递给从节点执行,主从数据就不一致了。
此时有一种选择是再次发起全量同步,但是全量同步数据量比较大,非常耗时。因此 Redis 在 2.8 版本引入了增量同步(psync 其实就是 2.8 引入的命令),仅需把连接断开其间的数据同步给从节点就好了。
repl_backlog原理
master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

直到数组被填满:

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
注意
repL_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导 致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步。
主从同步优化
主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:
- 在master中配置
repl-diskless-sync yes
启用无磁盘复制,避免全量同步时的磁盘IO(直接发给网络,避免一次IO)。 - Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
- 适当提高
repl_baklog
的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步 - 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
架构图:

小结
简述全量同步和增量同步区别?
- 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
- 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
- slave节点第一次连接master节点时
- slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
- slave节点断开又恢复,并且在repl_baklog中能找到offset时
哨兵

Sentinel的三个作用是什么?
- 监控
- 故障转移
- 通知
Sentinel如何判断一个redis实例是否健康?
- 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
- 如果大多数sentinel都认为实例主观下线,则判定服务下线
选哪个salve作为主节点?
- 首先会判断slave节点与master节点断开时间长短
- 然后判断slave节点的slave-priority值,越小优先级越高
- 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
- 最后是判断slave节点的运行id大小,越小优先级越高。
故障转移步骤有哪些?
- 首先选定一个slave作为新的master,执行slaveof no one(不为任何人所奴役)
- 然后让所有节点都执行slaveof 新master
- 强制修改故障节点配置,添加slaveof 新master
搭建哨兵集群
集群结构
这里搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。如图:

三个sentinel实例信息如下:
节点 | IP | PORT |
---|---|---|
s1 | 192.168.150.101 | 27001 |
s2 | 192.168.150.101 | 27002 |
s3 | 192.168.150.101 | 27003 |
准备实例和配置
要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
我们创建三个文件夹,名字分别叫s1、s2、s3:
# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3
如图:

然后在s1目录创建一个sentinel.conf文件,添加下面的内容:
port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"
解读:
port 27001
:是当前sentinel实例的端口sentinel monitor mymaster 192.168.150.101 7001 2
:指定主节点信息mymaster
:主节点名称,自定义,任意写192.168.150.101 7001
:主节点的ip和端口2
:选举master时的quorum值
然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):
# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf
修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:
sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf
启动
为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf
启动后:

测试
尝试让master节点7001宕机,查看sentinel日志:

查看7003的日志:

查看7002的日志:

RedisTemplate的哨兵模式
在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。
在项目的pom文件中引入依赖:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
然后在配置文件application.yml中指定redis的sentinel相关信息:
spring:
redis:
sentinel:
master: mymaster
nodes:
- 192.168.150.101:27001
- 192.168.150.101:27002
- 192.168.150.101:27003
配置读写分离
在项目的启动类中,添加一个新的bean:
@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}
这个bean中配置的就是读写策略,包括四种:
- MASTER:从主节点读取
- MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
- REPLICA:从slave(replica)节点读取
- REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master
集群
Redis分片集群
- 海量数据存储问题
- 高并发写的问题
使用分片集群可以解决上述问题,如图:

分片集群特征:
集群中有多个master,每个master保存不同数据
每个master都可以有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:
IP | PORT | 角色 |
---|---|---|
192.168.150.101 | 7001 | master |
192.168.150.101 | 7002 | master |
192.168.150.101 | 7003 | master |
192.168.150.101 | 8001 | slave |
192.168.150.101 | 8002 | slave |
192.168.150.101 | 8003 | slave |
准备实例和配置
删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:
# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003
在/tmp下准备一个新的redis.conf文件,内容如下:
port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log
将这个文件拷贝到每个目录下:
# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf
修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:
# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf
启动
因为已经配置了后台启动模式,所以可以直接启动服务:
# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf
通过ps查看状态:
ps -ef | grep redis
发现服务都已经正常启动:

如果要关闭所有进程,可以执行命令:
ps -ef | grep redis | awk '{print $2}' | xargs kill
或者(推荐这种方式):
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown
创建集群
虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。
我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。
Redis5.0以后
集群管理以及集成到了redis-cli中,格式如下:
redis-cli --cluster create --cluster-replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003
命令说明:
redis-cli --cluster
或者./redis-trib.rb
:代表集群操作命令create
:代表是创建集群--replicas 1
或者--cluster-replicas 1
:指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1)
得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master
运行后的样子:

这里输入yes,则集群开始创建:

通过命令可以查看集群状态:
redis-cli -p 7001 cluster nodes

测试
尝试连接7001节点,存储一个数据:
# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1
结果悲剧了:

集群操作时,需要给redis-cli
加上-c
参数才可以:
redis-cli -c -p 7001
这次可以了:

散列插槽
插槽原理
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,每个键根据其名字的 CRC16 值被映射到这些哈希槽上。然后,这些哈希槽会被均匀地分配到所有的 Redis 实例上。查看集群信息时就能看到:

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
- key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
- key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算,得到一个hash值,然后对16384取余,得到的结果就是slot值。

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。
到了7003后,执行get num
时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点
小结
Redis如何判断某个key应该在哪个实例?
- 将16384个插槽分配到不同的实例
- 根据key的有效部分计算哈希值,对16384取余
- 余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
- 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀
集群伸缩
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

比如,添加节点的命令:

需求分析
需求:向集群中添加一个新的master节点,并向其中存储 num = 10
- 启动一个新的redis实例,端口为7004
- 添加7004到之前的集群,并作为一个master节点
- 给7004节点分配插槽,使得num这个key可以存储到7004实例
这里需要两个新的功能:
- 添加一个节点到集群中
- 将部分插槽分配到新插槽
创建新的redis实例
创建一个文件夹:
mkdir 7004
拷贝配置文件:
cp redis.conf /7004
修改配置文件:
sed /s/6379/7004/g 7004/redis.conf
启动
redis-server 7004/redis.conf
添加新节点到redis
添加节点的语法如下:

执行命令:
redis-cli --cluster add-node 192.168.150.101:7004 192.168.150.101:7001 #并以 192.168.150.101:7001 作为集群的入口节点
通过命令查看集群状态:
redis-cli -p 7001 cluster nodes
如图,7004加入了集群,并且默认是一个master节点:

但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上
转移插槽
现在将num存储到7004节点,因此需要先看看num的插槽是多少:

如上图所示,num的插槽为2765.
我们可以将0~3000的插槽从7001转移到7004,命令格式如下:

具体命令如下:
建立连接:

得到下面的反馈:

询问要移动多少个插槽,计划是3000个:
新的问题来了:

那个node来接收这些插槽??
显然是7004,那么7004节点的id是多少呢?

复制这个id,然后拷贝到刚才的控制台后:

这里询问,你的插槽是从哪里移动过来的?
- all:代表全部,也就是三个节点各转移一部分
- 具体的id:目标节点的id
- done:没有了
这里我们要从7001获取,因此填写7001的id:

填完后,点击done,这样插槽转移就准备好了:

确认要转移吗?输入yes:
然后,通过命令查看结果:

可以看到:

目的达成。
故障转移
集群初识状态是这样的:

其中7001、7002、7003都是master,计划让7002宕机。
自动故障转移
当集群中有一个master宕机会发生什么呢?
直接停止一个redis实例,例如7002:
redis-cli -p 7002 shutdown
1)首先是该实例与其它实例失去连接
2)然后是疑似宕机:

3)最后是确定下线,自动提升一个slave为新的master:

4)当7002再次启动,就会变为一个slave节点了:

手动故障转移
想让一个旧的master下线,让一个新的master上升为主节点。
在新的节点上利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如 下:

这种failover命令可以指定三种模式:
- 缺省:默认的流程,如图1~6歩
- force:省略了对offset的一致性校验
- takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见
案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位
步骤如下:
1)利用redis-cli连接7002这个节点
2)执行cluster failover命令
如图:

效果:

RedisTemplate访问分片集群
RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:
1)引入redis的starter依赖
2)配置分片集群地址
3)配置读写分离
在哨兵模式中,配的是哨兵的地址,在分片集群中配的就是集群中每个节点的地址。
spring:
redis:
cluster:
nodes:
- 192.168.150.101:7001
- 192.168.150.101:7002
- 192.168.150.101:7003
- 192.168.150.101:8001
- 192.168.150.101:8002
- 192.168.150.101:8003